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LETTER TO THE EDITOR 

Metastable states in the solvable spin glass model 

A J Bray and M A Moore 
Department of Theoretical Physics, The University, Manchester, M13 9PL, England 

Received 26 June 1981 

Abstract. The solutions of the equations of Thouless, Anderson and Palmer represent 
metastable states of the Sherrington-Kirkpatrick model of an king spin glass. A replica 
symmetry breaking scheme of the Parisi kind is employed to enumerate their distribution 
with free energy. 

The characteristic non-ergodic behaviour of spin glasses arises from their large number 
of metastable states. For the Sherrington-Kirkpatrick (1975) (SK) infinite-range model 
of an king spin glass the metastable states are described by the solutions of the 
Thouless-Anderson-Palmer equations (1 977, referred to as TAP). We have previously 
shown that there are a large number of these solutions (of order exp aN) ,  where N is the 
number of spins in the system, and that these solutions fall into two classes (Bray and 
Moore 1980a, referred to as I). The first class contains those whose free energies kBTf 
exceed a critical value kBTfc(T). Their properties and distribution with free energy are 
readily evaluated (see I, also de Dominicis et a1 1980, Tanaka and Edwards 1980). The 
average number (Ns(f)) of these metastable states of free energy kBTf is equal to the 
extremum with respect to n of exp(nfN)(Z”) where (2”) is the bond-averaged nth 
power of the partition function calculated within the two-group replica symmetry 
breaking scheme (Bray and Moore 1980b). These metastable states are ‘uncorrelated’. 
The second class of metastable states have free energies f<fc(T) and are correlated, 
with the Edwards-Anderson order parameter a measure of the correlation between 
them. It is the purpose of this note to show how such states can be handled by the means 
of an extension of the Parisi symmetry breaking scheme (Parisi 1979). 

The N TAP equations for the magnetisation mi of the ith spin are 

1 Gi E th- mi +P2(1 - q ) m i  - P  Jiimi = 0 
i 

with their associated free energy (divided by NkBT) 

where Z(ii, means a sum over all distinct pairs, q = N-l Xi  m: and Jii is a random 
exchange interaction with probability distribution 

P(Jii) = ( N / ~ T ) ” ~  exp(-NJ;/2). (3) 

0305-4470/81/090377 + 07$01.50 @ 1981 The Institute of Physics L377 



L378 Letter to the Editor 

The metastable states are the local minima of the free-energy functional f{mi}, which is 
stationary for the {mi} that satisfy the TAP equations. These equations are thought to be 
exact in the limit N + Co. The fact that many solutions of the TAP equations exist for 
temperatures T less than T, (T,= 1 in the units of equations (1)-(3)) suggests that the 
free energy barriers which separate the various minima of f { m i }  become infinite in the 
thermodynamic limit, otherwise thermal fluctuations would mix and so destroy the 
metastable states. The existence of such infinite barriers emerges clearly in the dynamic 
calculations of Sompolinsky and Zippelius (1981). Because of these barriers the system 
remains trapped forever in a particular metastable state. Hence, if one is interested in 
constructing a theory to explain experiments (which for the SK model means Monte 
Carlo simulations!) it is not always appropriate to evaluate equilibrium properties 
derived in the usual way from the partition function 2. Such calculations invoke an 
unrestricted trace over the spins Si and do not allow for the fact that the system is stuck 
in a particular metastable state. The history of the system determines that metastable 
state into which it settles. A particularly graphic example of the difference between the 
equilibrium value of a quantity and its value for a given metastable state is provided by 
the susceptibility x. The Monte Carlo work of Kirkpatrick and Sherrington (1978) 
shows that ,y apparently vanishes as T + 0, whereas the equilibrium calculation of Parisi 
gives x = 1 for all T < T,. The susceptibility determined in the Monte Carlo experiment 
is essentially just the induced magnetisation of a given metastable state divided by the 
small applied field h. In the equilibrium calculation, application of the field h, no matter 
how small, induces a hop to the new distinct state of lowest free energy, which has a 
magnetisation larger than that of the original state (Bray and Moore 1980~) .  

For a finite-range model of a spin glass, such as the Edwards-Anderson (1975) 
model, we speculate that metastable states still exist at finite temperatures provided the 
dimensionality of the system is greater than the lower critical dimension (LCD), which is 
generally supposed to be four (Fisch and Harris 1977, Reed et a1 1978). Below the LCD, 
metastable states really only exist at T = 0, where they correspond to the various 
minima of the Hamiltonian %' = - C(ii ,  JijSiSi. We suspect that the infinite barriers 
separating the minima melt away below the LCD, thereby preventing the existence of 
finite temperature metastable states. The numerical work of Morgenstern and Binder 
(1980) suggests that for two- and three-dimensional systems only uncorrelated 
metastable states exist and so the critical energy coincides with the ground-state energy. 

It is convenient to substitute for XjJiimj from equation (1) in equation (2) to expressf 
as a sum of single-site terms: 

f = N-' 1 f ( m i )  = N-' 1 [-In 2 -ip2(1 - q 2 )  +3mith-'mi +3 ln(1- m?)]. (4) 
i i 

The density of solutions associated with a particular free energy f is, therefore, 

where ldet AI is the Jacobian normalising the delta functions: 

We want to calculate (In N,(f)> where the angular brackets denote an average over the 
{Jij} .  This is because !n N s ( f )  is extensive, i.e. proportional to N, and so its average 
should give results pertinent to a typical system (see I, also Bray and Moore 1981). To 
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compute (In Ns(f)) we shall use the replica method (Edwards and Anderson 1975), by 
writing 

(In Ns(f)) = lim n-' ln(N: (f)). (7) n - 0  

Introducing in equation ( 5 )  integral representations of the delta functions gives 

where g(m) = th-lm +P2(1 -q)m. Because of the factor N the integrals over q,, A, 
and U, will eventually be performed by steepest descents with the result that qoi = q, 
A, = A and ua = U. Therefore we shall drop the replica indices on these variables from 
the outset. In I it was shown that the error involved in bond-averaging the determinant 
of A separately was negligible as N + 03 which allows the following replacement in 
equation (8): 

ndetA{Jij, m i , } - , e x p { ~ n N ~ 2 ( 1 - q ) 2 } n ( 1 - m ~ , ) - ' .  (9) 
c( i,cr 

Performing the averages over the Jij results in 

(10) 
We now introduce Hubbard-Statonovich variables V, to decouple the (Xi xiami,)2 
term, qaP and qZp to decouple the ( X i  x i , x i p ) ( X j  mj,mjp) terms and finally pap and p $  to 
decouple the (Xi xi,mip)(Xj mj,xjp) terms, using variations on the identity 

112 

(2 1 P 2  ')=(E) J - I d v e x p (  -1Nv',,v). 
2 P 2  

exp - - a  

The sites are decoupled after making these transformations which allows the integrals 
over xioi and mi, to be done separately, site by site. Then 

(N: (f)) = Ext( exp[ nN(  - A q  - u f - A ( 1 - q )  - A 2 / 2 p 2 )  

I1 N 
-- c (77:pqoip+p2,p)+NlnI 2P2 oizp 
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where 

im 1 

I = I n: dx, \ dm. exp[ (Am: + uf(m,)+x,(th-’m, -Am,) 
-im a 21~1  -1 , l - m ,  a 

and V = - p2(1 - q )  - A .  Ext indicates that ari extremum is sought with respect to A, A, 
q, U, vap, q z p  and pa@, in other words the integrals over these variables have been 
performed by steepest descents. (We have assumed that at the extremum pap = ppu and 
v, = v.) 

Provided f > f c ( T )  the off-diagonal terms qmp, qZp and pap are zero at the stable 
extremum (see I, Bray and Moore 1981). These terms, which are a measure of the 
degree of correlation between different metastable states of the same free energy f 
acquire non-zero values only for f < f c (  T ) .  If one assumes that vap, 7zp and pop do not 
depend on the labels a and p, then one recovers the ‘innocent replica’ treatment of de 
Dominicis et a1 (1980), I and Roberts (1981). We suspect, however, that this replica 
symmetric ansatz is unstable like the Sherrington-Kirkpatrick solution of the SK model 
(de Almeida and Thouless 1978). In this note we explore the consequences of making a 
Parisi replica symmetry breaking ansatz for the off -diagonal matrices. 

We start by considering the perturbative calculation of (lnN,(f)) near T,. Set 
t = 1 - TITc and assume U, q, vap = O(t);  A, A, pap = O(t2) and qzp = O(t3).  Then 

N-’(ln N,(f)) = lim (nN)-’ In(” ( f ) )  = D + OD 
n-0 

where 

D = - a Q / P 2 - A 2 / 2 p 2 - ~ ( f  +In Z + $ p 2 - Q 2 / 4 ~ 2 ) + a Q - ~ ~ Q 2 + ~ A 2 - 2 ~ Q 2  
1 3 6 2  4 + $uQ3 + 9aQ3 + 2a A Q  - 7 u Q 4  - U AQ2 - A2Q + TA - 7aQ 

- 10aAQ2+%uQ5 +Ij?-uAQ3+;A2Q2 + a2Q2-  auQ3 +fu2Q4+ O(t7) 
(12) 

and 

Here a = A - A  and Q = p2q. The prime in the summation indicates a free sum over the 
replica labels with the diagonal terms excluded. We next parametrise each of the 
matrices vap, 720 and pap according to the Parisi scheme (Parisi 1979), when the 
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'off -diagonal term' OD becomes as n -* 0 

- 1  

We now find the extremum of N-'(ln Ns(f)), This involves differentiating with respect 
to a, Q, A, U and functionally differentiating with respect to q ( x ) ,  q * ( x )  and p ( x ) .  It 
proved impossible to solve analytically the resulting seven coupled nonlinear integral 
equations, except for one special value of the free energy f( = fmin), which turns out to be 
that value of the free energy at which (In N,(f))  = 0, i.e. the lower 'band-edge'. Then, to 
the order in t to which the calculation is valid, 

A = 2t2, U = -4t,  CY - U Q  = 4t3 2 q = t + t ,  

V ( X )  = V ( l ) f ( X ) ,  V * b )  = V * ( l ) f ( X ) ,  P ( X )  =p(l)f(x)  

f(x) = 2x9 x C X l  =z; 1 f ( x ) = l , x > x 1  

where 

and ~ ( 1 )  = t, ~ * ( l )  =4t3  and p ( 1 )  = -2t2. At the band-edge there exists only one 
metastable state-the state of lowest free energy. Consequently, one would expect 
then that Q = ~ ( l ) ,  since the meaning of these quantities is 

Q = P ( ( m : ) s )  and ~ ( 1 )  = P2((mi)?) 

where ( )s means an average over solutions at the given free energy. Hence, if there is a 
value off for which there is only one metastable state, Q should then equal ~ ( 1 )  (which 
in turn should be P 2  times the Edwards-Anderson order parameter ((Si)+) and ( )= 
denotes the usual thermal average). To the order to which the above calculations are 
valid this expectation is borne out. This should be contrasted with the result obtained at 
the band-edge in the innocent replica approximation, namely ~ ( 1 )  = 0.3471t + O(t2), 
Q = t +O(t2) (I), That Parisi symmetry breaking apparently gives Q = ~ ( 1 )  at the 
band-edge finally convinced us of its essential correctness. 

We believe that x1 decreases from its value of $ at f =fmin  down to zero at f = fc( T )  
(whose value is specified in I). Indeed, for values of f clase to fc('T) the off-diagonal 
terms are small and a perturbation analysis of the equations becomes possible. One 
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finds x1 Cc (fc( T) -f). An interesting question is whether fmin coincides with the free 
energy given by the direct Parisi approach to calculating the partition function 2. To 
the order to which we have gone the answer seems to be yes, even though the value of x1 
is quite different (xl in Parisi's work only reaches 3 at T = 0, (Vannimenus et a1 1981)). 
Our value for q also apparently coincides with his q(1). We conclude from this that the 
Parisi calculation gives the properties of the metastable state of lowest free energy at 
any value of the temperature and it is only this metastable state which evolves all the 
way down from T, to absolute zero. 

The perturbative calculation can be readily extended to include the effects of a 
uniform magnetic field h. Its effect is to modify the function f ( x )  below a value xo to a 
constant f ( x ) = f o ,  where f 0 = 2 x 0  and x;=3(ph)*/32t3. The new value of fmin is 
consistent with Parisi's solution as is the susceptibility (x = 1). This susceptibility is the 
equilibrium susceptibility and should not be confused with the susceptibility of a given 
state which is given by the relation x = p(1-4).  

It is possible, following Parisi (1979), to write down a differential equation whose 
solution would permit the calculation of (In N s ( f ) )  for arbitrary temperature T. We only 
give the result, which was obtained by the method of Duplantier (1981) 

N-'(ln N s ( f ) )  = - A q  - uf- 6(1- q )  + p(1)(1- q )  - d2/2p2 + bp(l)/P'  - p(1)'/2p2 

l 1  +$IO dx (T* (X)T(x )+p ' (X) )+ f (o ,  090) 

where f ( x ,  h l ,  h2) satisfies the differential equation 

subject to the boundary condition 

f(1, hl ,  hd  =In Z(h1,  h2) 
and 

dm (th-'m -bin + hl)' 1 

2 = [ 2 ~ ( Q - ~ ( l ) ) ] - " '  y e x p (  - 
-1  l - m  2(Q - T(1)) 

+ ( A  - ;~*( l ) )m'  + u f ( m )  + mhz . 1 
The parameters A, q, U, d and the functions ~ ( x ) ,  ~ " ( x )  and p ( x )  are varied to make 
(In N s ( f ) )  an extremum. These equations look intractable but it might be possible to 
show that they coincide with the much simpler equations of Parisi when f =fmin, where 
we expect Q = ~ ( 1 ) .  

While there remain many interesting and unsolved topics in connection with the SK 
model it does now seem valid to refer to it as the solvable model for the spin glass 
transition. 
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